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Selective modal transducers (SMTs) are developed for piezolaminatedanisotropic zero-Gaussian curvature shell
systems that are capable of sensing and exciting any speci� ed set of vibrational modes according to a speci� ed set
of modal participation factors. Transduction of selected modes is accomplished through combining the effect of
three piezolaminate pairs, whose piezoelectric � elds are varied spatially. Each coupled pair contains a single layer
located anywhere strictly above the reference plane, which is complemented by a second layer collocated below the
reference plane. Piezoelectric constitutive properties associated with each layer in a given couple must be identical,
although the constitutive properties of all three couples must be uniquely different. If all SMTs are formed from
the same stock material, the stock material must be piezoelectrically biaxialand the skew angles of all couples must
be unique. Individualactuator inputs must be proportional to a common control function, or conversely the sensed
output must be a weighted sum of the measurements acquired by individual layers. An algorithm is presented
that dictates how the piezoelectric � eld strength of each SMT layer must be varied spatially and that is an explicit
function of piezoelectric constants, mode shapes, and designer-chosen modal participation factors. A numerical
example is given that both illustrates and validates the SMT design concept.

I. Introduction

W ITHIN the past decade several vibration control techniques
have been developed for simple beam and plate systems that

utilizedistributedpiezoelectrictransducersformed frompolyvinyli-
dine � uoride (PVDF).1;2 PVDF actuatorshave been designedwhose
spatially varying piezoelectric � eld properties were exploited to
provide for the simultaneous control of all modes or the selective
control of desired modal subsets in cantilevered and simply sup-
ported beams.3 Miller and Hubbard4;5 developeda reciprocalsensor
theory and subsequently incorporated PVDF sensors and actuators
into multicomponentsystems in which each component itself was a
smart structuralmember. Burke and Hubbard6 developeda formula-
tion for the control of thin elastic (Kirchhoff–Love) isotropic plates
subject to most combinationsof free, clamped, or pinned boundary
conditions,in which the activeelementswere spatiallyvaryingbiax-
ially polarized piezoelectric transducer layers. Lee generalized the
classical laminate theory7 to include the effect of laminated piezo-
electric layers and, thus, to provide a theoretical framework for the
distributedtransductionof bending,torsion,shearing,shrinking,and
stretching in � exible anisotropicplates.8 Miller et al.9 subsequently
employed Lyapunov’s second method to derive a general active
vibration suppression control design methodology for anisotropic
laminated piezoelectric plates.

The just-mentioned vibration control strategies for both beams
and plates share several common limitations. Although all of these
methods reduce the vibrationcontroltask to a selectionof individual
piezolaminae� eld functions,noneoffers a generalmethodfordeter-
mining those � eld functionsso as to ensureactivevibrationsuppres-
sion.A poor choice in piezo� eld functions,althoughguaranteednot
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to destabilizethe structure through the active additionof vibrational
energy, may extract little or no vibrational energy from the system.
Furthermore, often the designer is concerned with suppressing vi-
brations in only a certain modal subset. The generalized function
approach to choosing spatial � eld functions,3;6 although adequate
in certain scenarios for guaranteeingsome measure of active energy
extraction from all modes, generally will not be able to provide a
means to selectively target a speci� c modal subset. Finally, most
methodologiesmentioned have been exclusive to isotropic systems
and are, thus, incompatible for use with orthotropicand anisotropic
aeroelastic structures commonly encountered.

For anisotropic plate systems and their derivatives, these limita-
tions have been answered through the development of a selective
modal control (SMC) methodologyin which the designeroptimally
utilizes the available piezolaminas so as to most effectively realize
any admissible performance objective.10 Through fully integrating
both the structuraland controldesignprocesses,a broadclass of sta-
bility robust approaches were de� ned through the identi� cation of
conditions that suf� ciently ensure global asymptotic stability with-
out requiring perfect knowledge of design parameters, structural
constraints, or modal behavior. Central to the SMC methodology
was the developmentof a selective modal transducer (SMT) theory
for anisotropicplates.11

In this paper, the SMT theory is extended to include anisotropic
zero-Gaussian piezolaminated shells, i.e., curvilinear piezostruc-
tures whose geometries are fully deformable onto a plane. SMTs
are a class of transducers that are capable of sensing and excit-
ing any speci� ed set of vibrationalmodes in a selectivelyweighted
fashion.The transductionof selectedmodal subsets is accomplished
through combining the effect of six piezolaminaswhose piezoelec-
tric � eld distributions vary spatially. Design criteria are identi� ed
that lead to an algorithm for determining the speci� c piezoelec-
tric � eld distributions and scaling factors required of each layer
in the composite transducer. The SMC methodology presented in
Ref. 10 then becomes fully extensible to this class of shell struc-
tures. The paper � rst presents a concise system description and a
Hamiltonian derivation of the equations of motion for anisotropic
piezolaminated shells. A general anisotropic SMT shell theory is
then developed,and an anisotropicshell SMT numerical example is
presented.
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II. System Model Development
A. Geometry

Figure 1 provides a geometric de� nition of the composite shell
structure under consideration.There exist exactly N laminated lay-
ers, all of which are consideredto be piezoelectricallyactive:Piezo-
electric constants relative to the nonpiezoelectric substructure will
be set to zero. The material properties within each lamina are as-
sumed continuous. The electromechanical transduction effect of
each lamina may vary spatially. An orthogonal curvilinear coor-
dinate frame is de� ned by the unit vectors O®1; O®2; and O®3. Piezo-
laminate sublayers are assumed to be transversely anisotropic, i.e.,
monoclinic relative to the O®3 axis. As shown in Fig. 2, the reference
surfaceof the shell is locatedon the ®3 D .®3/0 plane.The reference
plane itself may be arbitrarily located, although it is typically as-
signed to the structuralmidplane. In orthotropicand isotropic struc-
tures,however,the referenceplane is designatedas the neutralplane.
De� ning the distance in the O®3 direction between any arbitrary
point and the reference plane as z, any arbitrary point .®1; ®2; ®3/
may be equivalently expressed as [®1; ®2; .®3/0 C z]. The in� nites-
imal distance ds between two arbitrary points .®1; ®2; ®3/ and
.®1 C d®1; ®2 C d®2; ®3 C d®3/ of a shell element in the curvilinear
frame is given as12

ds2 D L2
1.d®1/

2 C L2
2.d®2/

2 C d®2
3 (1)

where the Lamé coef� cients L1 and L2 are de� ned as

L1 A1[1 C .z=R1/]; L2 A2[1 C .z=R2/] (2)

Fig. 1 Geometry of general piezoelectric laminated shell system.

Fig. 2 Lamina coordinate de� nitions generalized for a coordinate
frame whose origin is displaced a distance (®3 )0 from the reference
surface.

and A1 and A2 are the Lamé parameters.13 R1 and R2 are the radii of
curvature corresponding to the O®1 and O®2 directions, respectively.
Lamé parameters and radii of curvature for several common struc-
tural geometries may be found in the literature.12 The discussion to
followis limited to zero-Gaussiancurvatureshells, i.e., shellgeome-
tries de� ned such that 1=R1 R2 D 0, which include all geometries
that are developable onto a plane.

The O®3 locations of the surfaces of each individual lamina are
de� ned such that the bottom layer of the compositeshell is assigned
the index k D 1, and the indices increase unitarily. The distances
from the reference surface to the lower, upper, and middle surfaces
of any given lamina are, respectively, de� ned as zk ¡ 1, zk , and z0

k .
The thickness of any given lamina is de� ned as hk . The composite
referencesurface is displacedat some distance .®3/0 from the origin
of the coordinate frame. The composite thickness is de� ned as h.
The upper and lower surfacesof the compositeare located at heights
zN and z0 , respectively.

B. Governing Assumptions
A number of assumptions are made for the derivation of the sys-

tem equations, in accordance with the classical (nonpiezo) aniso-
tropic laminated cylinder theory of Bert et al.14

1) Displacements are small compared to the shell thickness, so
that the strain-displacementrelations may be assumed to be linear.

2) The Kirchhoff hypothesis is applicable, i.e., line elements nor-
mal to the reference surface before deformation remain straight,
normal to the deformed reference surface, and unchanged in length
after deformation.

3) The ratio of shell thickness to each radius of curvature is
small compared with unity so that Love’s � rst-approximationshell
theory15 is applicable (h=R1; h=R2 ¿ 1).

4) Each lamina is assumed to be in a state of plane stress. Trans-
verse normal and shear strains are neglected.

5) Each individual lamina is assumed to behave macroscopically
as an anisotropic, linearly elastic material. Elastic parameters may
vary spatially. The mass density and thickness of each layer is uni-
formly constant.

6) Principal geometric axes of any given layer may be arbitrarily
rotatedabout the O®3 axis with respect to theprincipalgeometricaxes
of the shell. If a given layer is piezoelectricallyactive, its principal
geometric axes coincide with its principal piezoelectric rolling and
transverse rolling axes.

7) The layers are assumed to be bonded together perfectly such
that interlaminar regions are massless and in� nitesimally thin.

C. Piezolamina Stress–Strain Behavior
Figure 3 shows the coordinate system of an individual laminate.

In Fig. 3 and in the ensuingdiscussion,a prime superscriptwill refer
to the principal geometric axes of an individual lamina (rolling and
transverse rolling axes according to assumption 6). The electrical
� eld distribution of each piezolaminate may be spatially varied by
means of varying the surface electrode pattern of each layer. The
intensity of electromechanical energy transduction is considered
constant through the thickness but may vary spatially as a function
of ®10 and ®20 . The elastic moduli of each layer need not be constant
throughout the dominant surface of the shell. The in� uence of the
surface electrode layers on the material properties of the lamina is

Fig. 3 Geometry of an individual piezoelectric lamina.
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neglected. A positive poling direction of each layer is de� ned as
outwardly normal to the geometric midplane of the system.

The stress-strainbehaviorof each individuallamina is established
based on the assumptions listed in Sec. II.B. Adopting Institute of
Electricaland ElectronicsEngineersstandard16 nomenclature,these
assumptions lead to the constitutive sublamina strain expression17

²10

²20

²60

D
c1010 c1020 c1060

c1020 c2020 c2060

c1060 c2060 c6060

¾10

¾20

¾60

C
d3010

d3020

0

E30 (3)

Referring to each speci� c lamina by a superscript k, the follow-
ing de� nitions are introduced, where the subscript p refers to the
principal coordinate frame of the kth lamina:

¾k
p; ²k

p ; dk
p; Qk

p

¾10

¾20

¾60

k

;

²10

²20

²60

k

;

d3010

d3020

0

k

;

Q1010 Q1020 Q1060

Q1020 Q2020 Q2060

Q1060 Q2060 Q6060

k

(4)

Using the preceding de� nitions, Eq. (3) may be inverted and ex-
pressed as

¾k
p D Qk

p²k
p ¡ Qk

pdk
p E k

30 (5)

According to Fig. 2, the kth lamina principal axes O®10 and O®20

are not coincidentwith the composite principal geometric axes, but
rather are rotated about the O®3 axis through a skew angle µ k with
respect to the ( O®1; O®2) directions. The following stress and strain
transformation laws are then established:

¾k
p D T1¾

k ; ²k
p D T2²k (6)

where ¾k and ²k are the stress and strain states resolved into the
principal composite geometric axes. The transformation matrices
are de� ned as

T1; T2

m2 n2 2mn

n2 m2 ¡2mn

¡mn mn m2 ¡ n2

;

m2 n2 mn

n2 m2 ¡mn

¡2mn 2mn m2 ¡ n2

(7)

where m cos µ k and n sin µ k . The constitutive stress relation-
ship [Eq. (5)] then becomes

¾k D Qk²k ¡ ek
31 ek

32 ek
36

T
E k

3 (8)

where it is noted that E k
30 D E k

3 and that the material stiffness
matrix is de� ned as Qk T ¡1

1 Qk
pT2. The piezoelectric constitutive

parameters ek
3i are de� ned according to

ek
31 ek

32 ek
36

T
T ¡1

1 Qk
pdk

p (9)

A nontrivialskewanglecausesthe e36 parameterto becomenonzero,
allowing for the induction and detection of twisting moments and
shear forces.

D. Composite Strain Relationships
According to assumption 2 in Sec. II.B, it is assumed that the

displacements in the O®1 and O®2 directions vary linearly through

the shell thickness, whereas the displacements in the O®3 direction
remain independent of ®3:

U .®1; ®2; ®3/

V .®1; ®2; ®3/

W .®1; ®2; ®3/

D
u.®1; ®2/

v.®1; ®2/

w.®1; ®2/

C ®3

¯1.®1; ®2/

¯2.®1; ®2/

0

(10)

where U; V , and W describe the displacements of any given point
on the structure in the O®1; O®2 , and O®3 directions, respectively.
The displacements of any given point on the reference surface
are described by u; v; and w, whereas ¯1 and ¯2 represent angles.
Neglecting transverse shear de� ections (assumption 4), the angles
¯1 and ¯2 are given by13

¯1 D
u

R1
¡

1
A1

@w

@®1
; ¯2 D

v

R2
¡

1
A2

@w

@®2

(11)

The strain-displacementrelationships for a thin shell subject to as-
sumptions 1–5 are given by13

²1 D
1
A1

@U

@®1
C

V

A1 A2

@ A1

@®2
C

W

R1

(12)

²2 D 1
A2

@V

@®2

C
U

A1 A2

@ A2

@®1

C
W

R2

(13)

²6 D
A2

A1

@

@®1

V

A2
C

A1

A2

@

@®2

U

A1

(14)

SubstitutingEqs. (10) and (11) intoEqs. (12–14), separatingthose
terms that are independentof®3 from those terms linearlydependent
on ®3 , and recasting into matrix form yields

²k D [I3 ®3 I3]
²0

·
(15)

I3 is the identity matrix of rank 3, and the vectors ²0 and · are
the reference surface membrane and bending (curvature) strains,
de� ned according to

²0; ·

1
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@u

@®1
C

u

A1 A2

@ A1

@®2
C
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1
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C w
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@®2

u

A1

;

1
A1

@¯1

@®1
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A1 A2
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@®2

1
A2

@¯2

@®2
C ¯1

A1 A2

@ A2

@®1

A2

A1

@

@®1

¯2

A2
C

A1

A2

@

@®2

¯1

A1

(16)

Note that both ²0 and · are independentof ®3 . Because the strainsas
stated in Eq. (15) vary linearly throughthe thickness, it has been im-
plicitly recognized that the constitutive strain relationship for each
individual lamina is identical. The stresses within each lamina will
also vary linearly through the thickness, although the composite
stress state will be discontinuousacross any interlaminar boundary
in which the constitutivematerial parametersof the adjoining layers
are not identical [Eq. (8)]. Introducing the linear and homogeneous
differential operator E de� ned in the Appendix, Eq. (15) becomes

²k D [I3 ®3 I3][.1=A1 A2/ E x] (17)

where x D [u v w]T is the state vector.
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E. Composite Laminate Force and Moment Resultants
The stress state of the composite shell structure may be resolved

into a quasistatically equivalent representation of resultant forces
and moments acting along the reference surface, whose classical
interpretation is found throughout the literature.7;12;13 Mathemati-
cally, the in-plane force resultants (N [N1 N2 N6]T ) and moment
resultants (M [M1 M2 M6]T ) are de� ned as

N

M
D

N

k D 1

zk

zk ¡ 1

I3

®3 I3
¾k d®3 (18)

where

¾

N

k D 1

¾k

and I3 is an identity matrix of rank 3. SubstitutingEqs. (8) and (17)
into Eq. (18) yields

N

M
D

k

k D 1

zk

zk ¡ 1

Qk ®3 Qk

®3 Qk ®2
3 Qk

1
A1 A2

E x

¡
I3

®3 I3
ek

31 ek
32 ek

36

T
E k

3 d®3 (19)

De� ning the kth piezolaminadrivingvoltageas V k .t/ D hk E k
3 .t/

and integrating Eq. (19) yields

N

M
D

A B

B D
1

A1 A2
E x ¡

N

k D 1

ek V k (20)

where A; B; D represent equivalent composite material parameters
de� ned by

.A; B; D/

N

k D 1

zk

zk ¡ 1

1; ®3; ®2
3 Qk d®3 (21)

and the vector ek is de� ned as

ek ek
31 ek

32 ek
36 z0

k ek
31 z0

k ek
32 z0

ke
k
36

T
(22)

[Note there is an ambiguity regarding the sign de� nition of V k .t/
that is addressed speci� cally in Ref. 17.]

F. Piezoelectric Field Distribution Functions
The spatially varying behavior of the electromechanical trans-

duction effect, typically accomplished through doping or repoling
processes,18 is introduced through consideration of a dimension-
less, spatiallyvaryingpiezoelectric� elddistributionfunction(PFF),
3k .®1; ®2/. The � eld function is de� ned such that the piezoelectric
� eld vector ek is equivalently expressed in the form

ek D ek
31 0

ek
32 0

ek
36 0

z0
k ek

31 0
z0

k ek
32 0

z0
k ek

36 0

T

3k

D ek
03k (23)

The piezoelectric constants .ek
31/0; .ek

32/0; and .ek
36/0 are arbitrari-

ly de� ned as the values of ek
31; ek

32; and ek
36 at the point of maximum

electromechanical transduction so that 3k is normalized, i.e., the
maximum value of 3k is unity. For convenience in the ensuing
analyses the vector ek

¤ is also de� ned such that

ek
¤ ek

31 0
ek

32 0
ek

36 0
(24)

Substitution of Eq. (23) into Eq. (20) then yields

N

M
D 1

A1 A2

A B

B D
E x ¡

N

k D 1

ek
03k V k (25)

G. Equations of Motion
From Hamilton’s principleit is known that a geometricallyadmis-

sible motion of a conservative system between prescribed con� gu-
rations at arbitrary times t0 and t1 satis� es the geometric dynamic
force requirements if and only if

±

t1

t0

[T ¡ U ] dt D 0 (26)

where the symbol ± indicates geometric variation. T and U are de-
� ned as the system kinetic and potential energy states, respectively.
The potential energy state includes both mechanical energy and
electrical enthalpy terms and is de� ned as16

U
N

k D 1 V

1

2
.²k/T Qk ²k ¡ ek

31 ek
32 ek

36 ²k E k
3

¡ 1
2

"k
33 E k

3

2
dV C qk V k (27)

where dV D A1 A2 d®1 d®2 d®3 is a differential volumetric element,
V is the total volume of the kth layer, and "k

33 is the electricalpermit-
tivity of the kth layer.The � nal term on the right-handside (RHS) of
the expression (27) represents electrical work due to a static charge
on the kth layer subjected to an applied voltage � eld. Substituting
Eq. (17) into expression(27) and integratingwith respect to ®3 from
zk ¡ 1 to zk yields

U D
N

k D 1 A

1

2

1
A1 A2

E x
T

A B

B D
1

A1 A2
E x

¡ 1
A1 A2

E x
T

ek
03k V k ¡ 1

2

"k
0

hk
3k .V k /2 dA C q k V k

(28)

where the � eld distribution function 3k has been introduced via
Eqs. (23). Maximum permittivity in the kth lamina, "k

0 , has been
de� ned such that "k

33 D 3k "k
0 .

The total � rst variation in U may be expressed as

±U D .U/T
x ±x C

N

k D 1

.U/V k ±V k (29)

where .U/x and .U/V k are the � rst partial derivatives of U with
respect to both the displacement� eld vector and the appliedvoltage
� eld, respectively.Carrying out the variation with respect to V k ,

N

k D 1

.U/V k ±V k

D
N

k D 1

q k ¡
A

1
A1 A2

.E x/T ek
03k dA ¡ C k

pV k ±V k

(30)

where the capacitance C k
p of the kth layer is de� ned as

C k
p

A

"k
0

hk
3k dA (31)

RecallingEq. (25) and carryingout the variationwith respect to x,

.U/T
x ±x D

A

1
A1 A2

E .±x/

T
N

M
dA (32)

Integrating Eq. (32) by parts,

.U /T
x ±x D

A

±xT 1
A1 A2

DT N

M
dA C I1 C I2 (33)



MILLER, OSHMAN, AND ABRAMOVICH 459

where

I1 D
®¤

2

A2[.N1/±u C .N6/±v C .Q4/±w

C .M1/.±¯1/ C .M6/.±¯2/]®¤
1

d®2 (34)

I2 D
®¤

1

A1[.N6/±u C .N2/±v C .Q5/±w

C .M6/.±¯1/ C .M2/.±¯2/]®¤
2

d®1 (35)

and D, Q4, and Q5 are de� ned in the Appendix. The symbols ®¤
1

and ®¤
2 refer to boundary limits along ®1 and ®2 , respectively.

The kinetic energy is de� ned as

T
1

2 A

½hxT
t xt dA

so that on integration by parts its variation is given as

±T D
A

±x ¢ .¡½hxtt / dA (36)

Substituting Eqs. (29), (30), (33), and (36) into Eq. (26) then yields

t1

t0

dt ±xT

A

½hxtt C 1
A1 A2

DT N

M
dA

C
N

k D 1

±V k qk ¡
A

1
A1 A2

.E x/T ek
03

k dA ¡ C k
p V k

C I1 C I2 D 0 (37)

Hence, when the system is perturbed by an arbitrary admissible
variation, the preceding equality holds only if

½hxtt C 1
A1 A2

DT N

M
D 0 (38)

and

qk .t/ D
A

1
A1 A2

.E x/T ek
03

k dA C C k
p V k (39)

Substitution of Eq. (25) into Eq. (38) then yields

xtt C K x D 1

½h A1 A2
DT

N

k D 1

ek
03k V k (40)

where the (mass-normalized) stiffness operator K is de� ned as

K
1

½h A1 A2
DT 1

A1 A2

A B

B D
E (41)

Damping may be introduced in the model through a damping op-
erator that is proportional to both the (mass-density-normalized)
stiffness operator K and the identityoperator I by positive factors
b0 and c0 (Ref. 19):

C D b0 I C c0 K (42)

Consequently, Eq. (40) becomes

xtt C C xt C K x D
1

½h A1 A2
DT

N

k D 1

ek
03

k V k (43)

Equations (39) and (43) are the equations of motion for a com-
posite piezoelectric thin shell. Mechanical boundary conditions,
given in Table 1, are derived via the boundary integrals (I1; I2 ).
The mechanical boundary conditions are stated in Poisson’s form
for conveniencebut are readily reducibleto four conditionsper edge
(Kirchhoff form).12 Equation (39) is the (de� nite) integral form of

Table 1 Boundary conditions
for a general thin shell

(Poisson form)

®1 D ®¤
1 ®2 D ®¤

2

N1 or u N2 or v
N6 or v N6 or u
Q1 or w Q2 or w
M1 or ¯1 M2 or ¯2
M6 or ¯2 M6 or ¯1

the electrostatic charge displacement equation for this class of ma-
terials and was derived through the implicit assumption that the
standard electrical continuity conditions16 are applicable at inter-
laminar and air-dielectric interfaces.

Equation(39)may be renderedintomoreusefulandadvantageous
forms by recallingthat the measuredcurrent is by de� nition the time
derivativeof the developedcharge, and the voltagemeasured across
the electrode surfaces is found by dividing the developed charge
by the � lm capacitance. In practice an output measurement that is
directly related to mechanically induced strain is desired. Thus, the
most useful sensor current or voltage relationships are found by
manipulating Eq. (39) such that

i k
s .t/ D i k

m .t/ ¡ C k
p

dV k

dt
D

A

1
A1 A2

.E xt /
T ek

03k dA (44)

V k
s .t/ D V k

m .t/ ¡ V k .t/ D 1
C k

p A

1
A1 A2

.E x/T ek
03k dA (45)

where i k
m.t/ and V k

m.t/ are the kth lamina current and voltage direct
measurements. The consequence of Eqs. (44) and (45) is that the
same piezoelectriclayer may be used simultaneouslyboth as a sen-
sor and as an actuator through the use of differential circuitry and
electronics.20 This capability is exploited in the SMT development
to follow.

H. Stiffness Operator Domain
The domainof de� nition for the operator K (and, thus, C ) is now

explicitly de� ned. Let the Hilbert space of all real-valuedpiecewise
continuousfunctions g.®1; ®2/; h.®1; ®2/ 2 A whose inner product
and norm are, respectively,de� ned as

h g; hi D
A

gT h dA; jgk D h g; gi
1
2

be denoted as H .A/. Designating the order of K as l, let any ad-
missible set of boundaryconditionsgiven in Table 1 be described in
terms of linear spatial differential operators Bi of maximum order
l ¡ 1 such that

Bi x D 0 on 0; i D 1; : : : ; l (46)

Let S be the set of all functions g for which Bi g D 0 on 0 and such
that g and all of its l derivativesare in H .A/. In the ensuingdevelop-
ment, the admissible set of boundary conditions to be considered is
such that K is renderedregular on S and has an inverse de� ned by a
Green’s function.Note that any set of boundaryconditionsthat does
not permit rigid-bodymotions automatically satis� es this criterion.
A procedurefor explicitlydetermining the Green’s function inverse
is given in Ref. 13.

III. SMT Theory
A. General Design Methodology

In this section an SMT theory is presented that allows for the
selective excitation and detection of each and every mode of an
anisotropicpiezolaminatedthin shell. Inman21 restated the result of
Caughey and O’Kelly22 as follows.

Theorem 1. Let xtt C C xt C K x D f .®1; ®2; t/ describe the
equations of motion of a general system excited by a distributed
force f . Then, if C and K commute and are self-adjoint on S, and
if each operator has an inverse de� ned by a Green’s function, the
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solution to the governing equation may be written as the uniformly
convergent series

x.®1; ®2; t/ D
1

j D 1

Á j .®1; ®2/q j .t/ (47)

where fÁ j .®1; ®2/g1
j D 1 is the set of orthonormal eigenfunctions

of K that are identical to the eigenfunctionsof C.
The operators C and K are proven in Ref. 23 to be self-adjoint

on S, and moreover, it is trivial to ascertain from Eq. (42) that both
operators commute, i.e., C K D K C. It has also been presupposed
that the boundary conditions are such that K (and, thus, C ) has a
Green’s function inverse. The following lemma may therefore be
stated based on Theorem 1.

Lemma 1. De� ne NÁ as

NÁ
1

j D 1

® j Á j ; ® j 2 <1 (48)

Then, if an anisotropicthin shell of area A is excitedby a distributed
force of the form f D Va.t/ K NÁ, the equations of motion of the
system are reduced to the form

Rqm C .b0 C c0¸/ Pqm C ¸mqm D ®m ¸m Va.t/ (49)

for all integers m > 0.
Remark. The parameters ® j are henceforth referred to as modal

participation factors (MPFs).
Proof. The set of eigenfunctions fÁ j g1

j D 1 is complete and spans
H .A/, NÁ 2 S; moreover, all conditions in Theorem 1 are satis� ed.
ReplacingtheRHS of Eq. (43)with Va.t/ K NÁ and applyingEq. (47),

1

j D 1

[Á j Rq j C .b0 C c0 K /Á j Pq j C K Á j q j ] D Va.t/
1

j D 1

® j K Á j

(50)

The modal orthonormality condition for anisotropic thin piezolam-
inated shells is given as23

hÁi ; Á j i D ±i j (51)

where ±i j is the Kronecker delta function. Because KÁ j D ¸ j Á j ,
where ¸ j is the eigenvalue corresponding to the j th eigenfunction,
a related condition is immediately established from Eq. (51):

hÁi ; K Á j i D ¸ j ±i j (52)

Taking the inner productof the m th eigenfunctionÁm with each side
of Eq. (50) and applyingEqs. (51) and (52) then returns Eq. (49) for
all integers m > 0.

Consider the following set of design constraints.
Condition1. Exactlyn transducerlayersare locatedstrictlyabove

the reference surface, and exactly n transducers are located strictly
below the reference surface (N D 2n).

Condition 2. There are at least six piezoelectricallyactive layers
(2n ¸ 6).

Condition 3. For each layer above the reference surface there ex-
ists a layer below the reference surface such that fzk D ¡zk C ngn

k D 1.
Condition 4. Layers located at heights zk and zk C n both are asso-

ciated with the identical piezopropertyvector ek
¤.

Condition 5. The piezoproperty vectors fek
¤gn

k D 1 associated with
at least three layers above and likewise below the reference surface
are different.When the samepiezostockmaterial is used throughout,
e0

31.µ k D 0/ 6D e0
32.µ

k D 0/ deg and the skew angles of at least six
laminas above (and likewise below) the surface must be different in
the range ¡90 · µ k < 90 deg.

The following lemma is now introduced.
Lemma 2. Let R 2 <6;6 be the matrix de� ned as

R
N

k D 1

ek
0 ek

0

T
(53)

Then, if conditions1–5 hold, R is invertible.Furthermore, R can be
written as

R D 2
n

k D 1

ek
¤ ek

¤
T

0

0 .zk/2ek
¤ ek

¤
T

(54)

Proof. Substituting Eq. (23) into Eq. (53) yields

R D
N

k D 1

ek
¤ ek

¤
T

zk ek
¤ ek

¤
T

zk ek
¤ ek

¤
T

.zk /2ek
¤ ek

¤
T

(55)

Satisfying conditions 1, 3, and 4 then transforms R into the form

R D 2

n

k D 1

ek
¤ ek

¤
T

0

0
n

k D 1

zkek
¤ zk ek

¤
T

(56)

which is equivalent to Eq. (54). Conditions 2 and 5 are seen to
be necessary for the invertibility of the submatrices located on the
diagonal of the rightmost term, based on the following lemma.23

Lemma 3. Given a set of column vectors frk : rk 2 <mg, the matrix

R0

n

k D 1

rkrT
k

is invertible if and only if there exist at least m linearly independent
vectors in the set frk gn

k D 1 . The consequenceof Lemma 3 is that the
submatrices on the diagonal of the rightmost expression in Eq. (56)
are invertibleonly if n ¸ 3 and at least three elementsof each vector
subset fek

¤gn
k D 1 and fzkek

¤gn
k D 1 are unique. Condition 1 ensures that

all zk are nonzero, and the physical geometry ensures that all zk are
different. Condition 2 and the � rst part of condition 5 then cause
the elements of each vector subset to be independent. The latter
part of condition 5 pertains to the event in which the same sample
of piezoelectric material is chosen to construct every active layer
in the structure. In such a case it is necessary that e0

31.µ
k D 0/ 6D

e0
32.µ k D 0/ deg and that the skew angles of laminas above (and

likewise below) the surface must be different in the range23 ¡90 ·
µ k < 90 deg. Obeying this constraint causes the piezoelectric � eld
propertiesof each of the n piezolaminasabove (and likewise below)
the reference surface to be uniquely different with respect to the
principal geometric directions.

The general SMT theorem is now stated.
Theorem 2. Consider an anisotropic (Kirchhoff–Love) thin shell

containing N piezolaminaswhose equationsof motion are given by
Eq. (43). Assume that each lamina is to function as a self-sensing
actuator such that the sensed measurement of the kth layer is given
byEq. (44). Let themeasuredstate is.t/ be formedfromtheweighted
sum of the sensed currents of each individual lamina such that

is .t/ D
N

k D 1

gk
0i k

s .t/

Let the time-bound control input V k .t/ of each piezolaminabe pro-
portionalto an identical time-dependentcontrol function Va.t/ such
that V k .t/ D gk

0 Va.t/. Assume that conditions 1–5 are satis� ed. If
the PFFs of each active layer are given by

3k D 1

gk
0

ek
0

T
R¡1 1

A1 A2

A B

B D
E NÁ (57)

where the weightedmodal sum NÁ is de� ned in Eq. (48), the invertible
constant matrix R is de� ned in Eq. (54), and the scaling factor g0 is
de� ned as

gk
0 D max

.®1;®2/ 2 A
ek

0

T
R¡1 1

A1 A2

A B

B D
E NÁ (58)



MILLER, OSHMAN, AND ABRAMOVICH 461

Then the measured state is reduced to the form

is.t/ D ½h
1

j D 1

® j ¸ j Pq j .t/ (59)

and the equations of motion of the shell are reduced to the form

Rq j C .b0 C c0¸/ Pq j C ¸ j q j D ® j ¸ j Va.t/ (60)

for all integers j > 0, where ® j ; ¸ j ; and Pq j are, respectively, the
modal participation factor, eigenvalue, and generalized modal ve-
locity associated with the j th eigenfunction.

Proof. Substituting V k.t/ D gk
0 Va.t/ and Eq. (57) into the RHS

of Eq. (43) and applying Lemma 2 yields [recall Eq. (41)]

xtt C C xt C K x D Va.t/ K NÁ (61)

Equation (61) is in the form supposed by Lemma 1, and thus the
equations of motion are reduced to Eq. (49), which is synonymous
with Eq. (60).

Recalling that dA D A1 A2 d®1 d®2 , the stipulation that

is.t/ D
N

k D 1

gk
0 i k

s .t/

transforms Eq. (44) into the form

is.t/ D
A

.E xt /
T

N

k D 1

gk
0ek

03
k d®1 d®2 (62)

Substituting Eq. (57) into Eq. (62) and applying Lemma 2 yields

is.t/ D
A

1
A1 A2

.E xt /
T A B

B D
.E NÁ/ d®1 d®2 (63)

Substituting Eqs. (47) and (48) into Eq. (63),

is.t/ D
1

i D 1

1

j D 1

® j Pqi
A

1
A1 A2

.E Ái /
T

A B

B D
.E Á j / d®1 d®2

(64)

Integrating the RHS of Eq. (64) by parts and applying the boundary
conditions found in Table 1 yields23

is.t/ D ½h
1

i D 1

1

j D 1

® j Pqi [hÁi ; K Á j i] (65)

which is reduced to Eq. (59) via Eq. (52).
Equations (59) and (60) imply that one may selectivelysense and

excite any given mode or subset of modes in the structure, which
leads naturally to the following corollary.

Corollary 1. When all suppositions of Theorem 2 are satis� ed,
the system is completely controllable and observable.

B. Discussion
Having established Theorem 2, an anisotropic piezolaminated

SMT theory has been de� ned. By obeying those conditions stip-
ulated in the theorem, a self-sensing actuator may be developed
whose measurement and excitation are selectively weighted in the
system modal space. The theory is readily extended to dedicated
modal sensors or modal actuators through simpli� cations that are
assumed to be obvious. The general theory may be straightfor-
wardly reduced to directly address orthotropic and isotropic shell
structures.23 Isotropic systems can be shown to require only a single
piezolayer as a suf� cient condition for complete controllabilityand
observablity.Orthotropic systems can be similarly shown to require
only three layers.

An SMT design methodology is thus presented: a modal subset
is selected, subset mode shapes are identi� ed, and MPFs are cho-
sen; the stipulated design conditions are then obeyed and Eq. (57)
is applied. Although practical limitations, e.g., piezoelectric sub-
layer inhomogeneity, may impede perfect implementation of the
design methodology, experimental results on a multilayered or-
thotropic piezoplate show that often the methodology can be ap-
plied without signi� cant degradation.24 Nonetheless, a companion
nonselectivemodal transducertheory has been developed11;23 based
on Theorem 2, which allows the modal character of a given piezo-
transducer to be determined directly. Greater � delity in the design
process could be accomplished through an iterative design process
that incorporates both theories.

IV. Numerical Example: Cylindrical Panel
The SMT design concept is both illustratedand validated through

a numerical example involving a cantilevered cylindrical panel
whose geometry is given in Fig. 4. The panel itself is a cylindrical
semisection, which spans 60 deg of a cylinder with a � xed radius
R, such that the (®2-dimension) width is 0.4 m. The section length
is 0.6 m. Three mechanically isotropic and piezoelectrically biax-
ial PVDF layers are bonded to each surface of a double-layered
graphite–epoxy (G–epoxy) composite substrate, and the layers are
sequentially numbered from top (layer 1) to bottom (layer 8). Rel-
evant material properties are given in Tables 2 and 3.

A discrete model of the passive system was developed based
on a 169-node � nite element representation of the plate using the

Table 2 Material properties for example structure

Property PVDF G–epoxy

E11 , Pa 2:00 £ 109 14:5 £ 109

E22 , Pa 2:00 £ 109 9:60 £ 109

G12 , Pa 1:42 £ 109 4:10 £ 109

º12 0:3 0:3
½, kg/m3 1780 1551
.e0

31/µ D 0 deg , C/m2 60 £ 103 ——
.e0

32/µ D 0 deg , C/m2 20 £ 103 ——

Table 3 Sublaminae skew angles and thicknesses

PVDF G–epoxy PVDF
(top) (middle) (bottom)

Layer 1 2 3 4 5 6 7 8

Skew angle, deg 60 0 ¡60 45 ¡45 ¡60 0 60
Thickness, ¹m 28 28 28 140 140 28 28 28

Fig. 4 Cylindrical panel example problem geometry.
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Table 4 Damping coef� cients
and natural frequencies

Mode ³m !m , rad/s

1 0.00748 29.93
2 0.01473 58.91
3 0.03583 143.3
4 0.03594 145.8
5 0.03898 155.9
6 0.04395 175.8
7 0.06420 256.8
8 0.06437 261.5
9 0.06836 273.4
10 0.08987 359.5

ANSYS � nite elementmodeling(FEM) package.Mass and stiffness
matrices M and K were obtained. Viscous and structural damping
losses were added to the model by introducing a damping matrix
C such that C D b0 I C c0 K , where [b0; c0] D [0:0001; 0:0005].
The � rst three mode shapes are shown in Fig. 5. The � rst 10 natural
frequenciesand damping ratios are listed in Table 4. The goal of this
example is to developan SMT that will exclusivelyexcite and detect
only the � rst two structuralmodes:The MPFs are thus selected such
that ®1;2 D 1=¸1; 1=¸2 , whereas all other MPFs are zero (¸ j D !2

j ,
where !2

j is the j th natural frequency).
Having determined the targeted subsystem mode shapes and se-

lected MPFs, the piezoelectric � eld functions are then determined
via Eq. (57). Based on the MPF values and data given in Tables 2
and 3, � eld functiondescriptionsfor each of the six active layers are
found via numerically approximating each mode shape as a sixth-
order polynomial in both ®1 and ®2 and then applying Eq. (57). The
six required PFFs for layers 1–3 and 6–8 are shown in Fig. 6. The
correspondingset of scaling factors gk

0 for layers 1–3 and 6–8 were
found to be 3.17, 1.34, 1.45, 2.74, 1.44, and 1.64, respectively.

Having completed the design process, the SMT design would
normally be implemented on the actual structure. For the purpose
of verifying the SMT theory, actual structural implementation is
replaced here with a numerical simulation. PremultiplyingEq. (43)
by ½h A1 A2 and recalling that V k.t/ D gk

0 Va.t/ such that

½h A1 A2xtt C ½h A1 A2 C xt C ½h A1 A2 K x

D ¡ DT
N

k D 1

gk
0ek

03k Va (66)

the FEM model was derived by ignoring the RHS and discretiz-
ing the left-hand side of Eq. (66) so as to arrive at a numerical
model in the form

M Rx C C Px C K Px D 0 (67)

where x is a time-dependent vector of ®1; ®2; ®3 displacements at
each node location. Using the piezo� eld functions just determined,
the state equations are augmented through the discretization of the
RHS of Eq. (66):

M Rx C C Px C K x D f Va (68)

Then, limiting the amount of modes of interest to 20 for the purpose
of simulation, a modal transformation of the form x D V q was
performed on Eq. (68), where V is a matrix whose columns are
the � rst 20-eigenvectors of Eq. (68) and q is a 20-element column
vector containing the � rst 20 modal coordinates.The modal system
representation is then given as

Rq C NC Pq C NK q D fq Va.t/ (69)

where NC and NK are diagonal matrices whose respective elements
contain the terms b0 Cc0¸m and ¸m . Rewriting Eq. (69) in � rst-order

Fig. 5 First three structural mode shapes in curvilinear coordinate
frame (de� ections are scaled); starred boundary indicates a clamped
condition.
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Fig. 6 Piezo� eld functions for the six SMT sublaminas.
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form and including Eq. (44) in discretized form, the augmented
system equations are

d
dt

q
Pq

D
0 1

¡ NK ¡ NC
q
Pq

C
0

fq
Va (70)

i D 0 f T
q

q
Pq

(71)

where i.t/ .1=½h/is.t/.
The SMT theory is itself validated by virtue of the observation

that the elements of fq are very nearly equal to ®m ¸m , with marginal
errors attributable to numerical differentiation. In particular,

f fq .1 : 5/gactual D [1:136 0:893 0:000571 0:0258 0:0238]T

(72)

Hence, error in the � rst mode was 13.6% and for the second mode
10.7%, whereas all MPFs correspondingto modes 3–20 were char-
acterized by nonzero, albeit small, values. The Bode magnitude
and phase plots of the transfer function i.s/=Va.s/ are given in
Fig. 7 and further illustrate the effectivenessof the design approach.
Modes m ¸ 3 are essentiallynot visible on the Bode plot becauseall
MPFs for those modes have been set to zero. The peak amplitudeof
modes 1 and 2 should havebeen 0 dB had the numericalapproxima-
tions been perfect, but instead deviate slightly.The most signi� cant
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Fig. 7 Frequency response of i(s)/Va(s).

source of errorwas in � tting the mode shapeestimates to polynomic
functions(for differentiation), which essentiallyis a nonquanti�able
error source but reasonablyassociatedwith observederror margins.

V. Conclusions
SMTs are developed for piezolaminated anisotropic shells in

which the contributionof each mode to the sensing or excitationof
the compositeanisotropicplate systemmay be selectivelyweighted.
The discussionhas been limited to zero-Gaussianthin shell geome-
tries well described by Love’s � rst approximationtheory. SMTs are
formed by combining the piezoelectric effect of several piezolami-
nas. The SMT theory provides the basis for a designmethodologyin
which the number and spatial � eld properties of piezoelectric sub-
laminas can be selected to yield transducerswith a speci� ed modal
response. In a future paper, the theory is incorporated into a SMC
strategy, wherein both control laws and piezo� eld functions are de-
termined optimally for a broad class of performance metrics. The
SMT theory can also be used in a converse sense to determine the
modal character of a given piezolaminated shell structure. These
SMT-based strategies provide a powerful tool for designing state-
of-the-art active composite substructures as composite fabrication
techniques further advance.

Appendix: De� nitions
The differential operator D is de� ned as

where the suboperators D43, D53 , and D63 are given by
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The operator E is de� ned as
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The transverse shear force resultants are de� ned as13
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A1 A2

D11 M1 C M2
@ A2

@®1
C D31 M6

(A6)

Q5 ¡ 1
A1 A2

M1
@ A1

@®2
C D22 M2 C D32 M6

The orthotropic stiffness suboperators are de� ned as
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