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Selective modal transducers (SMTs) are developed for piezolaminated anisotropic zero-Gaussian curvature shell
systems that are capable of sensing and exciting any specified set of vibrational modes according to a specified set
of modal participation factors. Transduction of selected modes is accomplished through combining the effect of
three piezolaminate pairs, whose piezoelectric fields are varied spatially. Each coupled pair contains a single layer
located anywhere strictly above the reference plane, which is complemented by a second layer collocated below the
reference plane. Piezoelectric constitutive properties associated with each layer in a given couple must be identical,
although the constitutive properties of all three couples must be uniquely different. If all SMTs are formed from
the same stock material, the stock material must be piezoelectrically biaxial and the skew angles of all couples must
be unique. Individual actuator inputs must be proportional to a common control function, or conversely the sensed
output must be a weighted sum of the measurements acquired by individual layers. An algorithm is presented
that dictates how the piezoelectric field strength of each SMT layer must be varied spatially and that is an explicit
function of piezoelectric constants, mode shapes, and designer-chosen modal participation factors. A numerical

example is given that both illustrates and validates the SMT design concept.

I. Introduction

ITHIN the past decade several vibration control techniques

have been developed for simple beam and plate systems that
utilize distributed piezoelectrictransducersformed from polyvinyli-
dine fluoride (PVDF).!? PVDF actuatorshave been designed whose
spatially varying piezoelectric field properties were exploited to
provide for the simultaneous control of all modes or the selective
control of desired modal subsets in cantilevered and simply sup-
ported beams.* Miller and Hubbard*> developeda reciprocalsensor
theory and subsequently incorporated PVDF sensors and actuators
into multicomponentsystems in which each componentitself was a
smart structural member. Burke and Hubbard® developed a formula-
tion for the control of thin elastic (Kirchhoff-Love) isotropic plates
subject to most combinations of free, clamped, or pinned boundary
conditions,in which the active elements were spatially varying biax-
ially polarized piezoelectric transducer layers. Lee generalized the
classical laminate theory’ to include the effect of laminated piezo-
electric layers and, thus, to provide a theoretical framework for the
distributedtransductionof bending, torsion,shearing,shrinking,and
stretching in flexible anisotropic plates® Miller et al.’ subsequently
employed Lyapunov’s second method to derive a general active
vibration suppression control design methodology for anisotropic
laminated piezoelectric plates.

The just-mentioned vibration control strategies for both beams
and plates share several common limitations. Although all of these
methodsreduce the vibrationcontroltask to a selectionof individual
piezolaminaefield functions,none offers a generalmethod for deter-
mining those field functionsso as to ensure active vibration suppres-
sion. A poor choice in piezofield functions, although guaranteed not
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to destabilize the structure through the active addition of vibrational
energy, may extract little or no vibrational energy from the system.
Furthermore, often the designer is concerned with suppressing vi-
brations in only a certain modal subset. The generalized function
approach to choosing spatial field functions,*® although adequate
in certain scenarios for guaranteeing some measure of active energy
extraction from all modes, generally will not be able to provide a
means to selectively target a specific modal subset. Finally, most
methodologies mentioned have been exclusive to isotropic systems
and are, thus, incompatible for use with orthotropic and anisotropic
aeroelastic structures commonly encountered.

For anisotropic plate systems and their derivatives, these limita-
tions have been answered through the development of a selective
modal control (SMC) methodology in which the designer optimally
utilizes the available piezolaminas so as to most effectively realize
any admissible performance objective.'® Through fully integrating
both the structural and control design processes, a broad class of sta-
bility robust approaches were defined through the identification of
conditions that sufficiently ensure global asymptotic stability with-
out requiring perfect knowledge of design parameters, structural
constraints, or modal behavior. Central to the SMC methodology
was the developmentof a selective modal transducer (SMT) theory
for anisotropic plates.'!

In this paper, the SMT theory is extended to include anisotropic
zero-Gaussian piezolaminated shells, i.e., curvilinear piezostruc-
tures whose geometries are fully deformable onto a plane. SMTs
are a class of transducers that are capable of sensing and excit-
ing any specified set of vibrational modes in a selectively weighted
fashion. The transductionof selected modal subsetsis accomplished
through combining the effect of six piezolaminas whose piezoelec-
tric field distributions vary spatially. Design criteria are identified
that lead to an algorithm for determining the specific piezoelec-
tric field distributions and scaling factors required of each layer
in the composite transducer. The SMC methodology presented in
Ref. 10 then becomes fully extensible to this class of shell struc-
tures. The paper first presents a concise system description and a
Hamiltonian derivation of the equations of motion for anisotropic
piezolaminated shells. A general anisotropic SMT shell theory is
then developed, and an anisotropic shell SMT numerical example is
presented.
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II. System Model Development

A. Geometry

Figure 1 provides a geometric definition of the composite shell
structure under consideration. There exist exactly N laminated lay-
ers, all of which are consideredto be piezoelectricallyactive: Piezo-
electric constants relative to the nonpiezoelectric substructure will
be set to zero. The material properties within each lamina are as-
sumed continuous. The electromechanical transduction effect of
each lamina may vary spatially. An orthogonal curvilinear coor-
dinate frame is defined by the unit vectors &, &,, and &;. Piezo-
laminate sublayers are assumed to be transversely anisotropic,i.e.,
monoclinicrelative to the & axis. As shown in Fig. 2, the reference
surface of the shellis located on the a3 = (a3) plane. The reference
plane itself may be arbitrarily located, although it is typically as-
signed to the structural midplane. In orthotropic and isotropic struc-
tures, however, the reference plane is designatedas the neutral plane.
Defining the distance in the &; direction between any arbitrary
point and the reference plane as z, any arbitrary point (o, 3, or3)
may be equivalently expressed as [«, a3, (¢¢3)0 + 2]. The infinites-
imal distance ds between two arbitrary points (o, oy, a3) and
(o¢y +day, ay + dasy, a3 +das) of a shell element in the curvilinear
frame is given as'?

ds® = L7(day)* + L3 (daz)* + doj ¢))
where the Lamé coefficients L and L, are defined as

L2 A1+ (z/RD], L2 A1+ (z/R)] ()
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Fig.1 Geometry of general piezoelectric laminated shell system.
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Fig. 2 Lamina coordinate definitions generalized for a coordinate

frame whose origin is displaced a distance (c3) from the reference
surface.

and A, and A, are the Lamé parameters.13 R, and R, are the radii of
curvature corresponding to the &, and &, directions, respectively.
Lamé parameters and radii of curvature for several common struc-
tural geometries may be found in the literature.!> The discussion to
followis limited to zero-Gaussiancurvatureshells,i.e., shell geome-
tries defined such that 1/R; R, = 0, which include all geometries
that are developable onto a plane.

The & locations of the surfaces of each individual lamina are
defined such that the bottom layer of the composite shell is assigned
the index k = 1, and the indices increase unitarily. The distances
from the reference surface to the lower, upper, and middle surfaces
of any given lamina are, respectively, defined as z; _, 2, and z{.
The thickness of any given lamina is defined as *. The composite
referencesurfaceis displaced at some distance («3 ) from the origin
of the coordinate frame. The composite thickness is defined as .
The upper and lower surfaces of the composite are located at heights
zy and zo, respectively.

B. Governing Assumptions

A number of assumptions are made for the derivation of the sys-
tem equations, in accordance with the classical (nonpiezo) aniso-
tropic laminated cylinder theory of Bert et al.!*

1) Displacements are small compared to the shell thickness, so
that the strain-displacementrelations may be assumed to be linear.

2) The Kirchhoff hypothesisis applicable, i.e., line elements nor-
mal to the reference surface before deformation remain straight,
normal to the deformed reference surface, and unchangedin length
after deformation.

3) The ratio of shell thickness to each radius of curvature is
small compared with unity so that Love’s first-approximationshell
theory' is applicable (h/R;,h/R, < 1).

4) Each lamina is assumed to be in a state of plane stress. Trans-
verse normal and shear strains are neglected.

5) Each individual lamina is assumed to behave macroscopically
as an anisotropic, linearly elastic material. Elastic parameters may
vary spatially. The mass density and thickness of each layer is uni-
formly constant.

6) Principal geometric axes of any given layer may be arbitrarily
rotated about the &3 axis with respectto the principal geometric axes
of the shell. If a given layer is piezoelectricallyactive, its principal
geometric axes coincide with its principal piezoelectricrolling and
transverse rolling axes.

7) The layers are assumed to be bonded together perfectly such
that interlaminar regions are massless and infinitesimally thin.

C. Piezolamina Stress-Strain Behavior

Figure 3 shows the coordinate system of an individual laminate.
InFig. 3 andin the ensuingdiscussion,a prime superscriptwill refer
to the principal geometric axes of an individual lamina (rolling and
transverse rolling axes according to assumption 6). The electrical
field distribution of each piezolaminate may be spatially varied by
means of varying the surface electrode pattern of each layer. The
intensity of electromechanical energy transduction is considered
constant through the thickness but may vary spatially as a function
of ayr and oy. The elastic moduli of each layer need not be constant
throughout the dominant surface of the shell. The influence of the
surface electrode layers on the material properties of the lamina is

(poling direction)
@,
3

electrode

o,

1
(rolling direction)

dipoles poling direction

Fig.3 Geometry of an individual piezoelectric lamina.
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neglected. A positive poling direction of each layer is defined as
outwardly normal to the geometric midplane of the system.

The stress-strainbehaviorof eachindividuallaminais established
based on the assumptions listed in Sec. I1.B. Adopting Institute of
Electrical and Electronics Engineers standard'® nomenclature, these
assumptions lead to the constitutive sublamina strain expression'’

€y cry G Crg ay dyy
€ [ = | cry ¢y crg oy |+ | dyy [Ex (3)
€¢ Crg  Cye¢  Cog O¢/ 0

Referring to each specific lamina by a superscript &, the follow-
ing definitions are introduced, where the subscript p refers to the
principal coordinate frame of the kth lamina:

k _k gk ok
UP’ Ep,dp, QP

oy ¢ € ¢ dyy ¢ Oy Qry Qg ¢
oy , | € .| dyy | Qv Ory Qe
O¢' €6’ 0 Ove Qvg Qeg

G

Using the preceding definitions, Eq. (3) may be inverted and ex-
pressed as

o, = 0y, ~ Qd, Ey )

According to Fig. 2, the kth lamina principal axes & and &
are not coincident with the composite principal geometric axes, but
rather are rotated about the & axis through a skew angle 6% with
respect to the (&, &,) directions. The following stress and strain
transformation laws are then established:

cr’; = T,o*, e’; = Ty 6)

where o and € are the stress and strain states resolved into the
principal composite geometric axes. The transformation matrices
are defined as

2 2mn m

n
A
T, .= | n* m> =2mn |, n

—2mn 2mn m?—n?

)

—mn mn m?—n?

where m £ cos6* and n2 sin6*. The constitutive stress relation-
ship [Eq. (5)] then becomes

T
ot = Q' - [e§1 e§2 e§6] E§ ®)

where it is noted that E;‘, = E§ and that the material stiffness
matrix is defined as QF £ T Q’;Tz. The piezoelectric constitutive
parameters e, are defined according to

T
[e§1 e§2 e§6] éTlilQl;d]; ©)

A nontrivialskew angle causesthe e3¢ parameterto becomenonzero,
allowing for the induction and detection of twisting moments and
shear forces.

D. Composite Strain Relationships
According to assumption 2 in Sec. IL.B, it is assumed that the
displacements in the &; and ¢, directions vary linearly through

the shell thickness, whereas the displacements in the & direction
remain independent of «3:

Uy, s, a3) u(oy, o) Bi(ar, as)
viap, o) | +oaz | Balar, ar) (10)

w(oy, ay) 0

Vi, ar,03) | =

Wiay, o, a3)

where U, V, and W describe the displacements of any given point
on the structure in the &, &,, and &s directions, respectively.
The displacements of any given point on the reference surface
are described by u, v, and w, whereas B, and §, represent angles.
Neglecting transverse shear deflections (assumption 4), the angles
B, and B, are given by'?

The strain-displacementrelationships for a thin shell subject to as-
sumptions 1-5 are given by

_ 13UV ohA W
- Al 80[1 A1A2 80[2 Rl

_ v U a4 W
- A2 80[2 A1A2 80[1 Rz

A, 0 Vv Ao (U
g=———— )+ ——— (14)
A1 80[1 A2 Azaolz A1

SubstitutingEgs. (10)and (11) into Egs. (12-14), separatingthose
terms thatare independentof o3 from those terms linearly dependent
on a3, and recasting into matrix form yields

€] (12)

(13)

€2

€0
€ =1L o] |: i| (15)
K

I; is the identity matrix of rank 3, and the vectors €’ and K are
the reference surface membrane and bending (curvature) strains,
defined according to

1w u A, w |
Al 80[1 A1A2 80[2 Rl
O o | LOov u A w
’ A2 80[2 A1A2 80[1 Rz ’
A, 0 v +A1 0 u
Al 80[1 A2 Az 80[2 Al
LB b oA
Al 80[1 A1A2 80[2
19 0A
L3, B 34 (16)
Az 80[2 A1A2 80[1
A (B, A (B
Al 80[1 A2 Az 80[2 Al

Note thatboth €’ and k are independentof 3. Because the strains as
statedin Eq. (15) vary linearly through the thickness, it has been im-
plicitly recognized that the constitutive strain relationship for each
individual lamina is identical. The stresses within each lamina will
also vary linearly through the thickness, although the composite
stress state will be discontinuousacross any interlaminar boundary
in which the constitutivematerial parameters of the adjoining layers
are not identical [Eq. (8)]. Introducing the linear and homogeneous
differential operator £ defined in the Appendix, Eq. (15) becomes

€ =[I o;L][(1/AAy) Ex] 17

wherex = [u v w]” is the state vector.
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E. Composite Laminate Force and Moment Resultants

The stress state of the composite shell structure may be resolved
into a quasistatically equivalent representation of resultant forces
and moments acting along the reference surface, whose classical
interpretation is found throughout the literature.”-'>!* Mathemati-
cally, the in-plane force resultants (N2 [N,N,N4]7) and moment
resultants (M £ [M, M, M]") are defined as

N L],
I:Mi| —;/Z;l |:a313i|cr das (18)

N
A
O':E O’k

k=1

where

and /; is an identity matrix of rank 3. Substituting Eqs. (8) and (17)
into Eq. (18) yields

N ko[ 0 w0 1
[M}‘Z/ I{L@Qk ang}AlAzfx

k=12~

I T
- |: ’ i| [e§1 e egﬁ] Ef} das (19)
azls

Defining the kth piezolaminadriving voltageas V¥ (r) = h* EX (1)
and integrating Eq. (19) yields

Nl [A B] 1 N
[M}_[B D}mé’x—ZeV (20)

k=1

where A, B, D representequivalentcomposite material parameters
defined by

N 2k
(A4,B,D)% Z/ (1,05, 03) 0" daty @1
k=121
and the vector e* is defined as
e = [e§1 e§2 egﬁ Z26§1 degz de;(ﬁ]T (22)

[Note there is an ambiguity regarding the sign definition of V*(¢)
that is addressed specifically in Ref. 17.]

F. Piezoelectric Field Distribution Functions

The spatially varying behavior of the electromechanical trans-
duction effect, typically accomplished through doping or repoling
processes,'® is introduced through consideration of a dimension-
less, spatially varying piezoelectricfield distributionfunction (PFF),
A*(ay, ;). The field functionis defined such that the piezoelectric
field vector e* is equivalently expressed in the form

T
e =[(eh), (), (eho), el k), 28k, ] A
= s A* (23)

The piezoelectric constants (ek,)o, (€,)o, and (ek)o are arbitrari-
ly defined as the values of e, %), and X, at the point of maximum
electromechanical transduction so that A* is normalized, i.e., the
maximum value of A* is unity. For convenience in the ensuing
analyses the vector e is also defined such that

do (), (), ()] (24)

Substitution of Eq. (23) into Eq. (20) then yields

N 1 [A B N
- _ E Vk
|:1Mi| A1A2 |:B Di|€x eOA (25)

k=1

G. Equations of Motion

From Hamilton’s principleit is known thata geometrically admis-
sible motion of a conservative system between prescribed configu-
rations at arbitrary times f, and f; satisfies the geometric dynamic
force requirements if and only if

5/ [T —U]dt =0 (26)

where the symbol § indicates geometric variation. 7 and U/ are de-
fined as the system kinetic and potential energy states, respectively.
The potential energy state includes both mechanical energy and
electrical enthalpy terms and is defined as'®

N
MAZ{///V[%(E,()TQ,(J_[%H N e o
k=1

- %8; (E§)2i| dv + quk} 27

where dV = A A, do; da, das is a differential volumetric element,
V is the total volume of the kth layer, and &%, is the electrical permit-
tivity of the kth layer. The final term on the right-hand side (RHS) of
the expression (27) represents electrical work due to a static charge
on the kth layer subjected to an applied voltage field. Substituting
Eq. (17) into expression (27) and integrating with respect to o3 from
Zk—1 to zx yields

N T
1 1 A B 1
u_;[//; |:5<A1A2 €x> |:B Di| <A1A2 €x>
1 ! 1/ &
— k ka__ S0 Ak sz A ka
<A1A2€x> eOA 2<hkA )( )i|d +q }

(28)

where the field distribution function A* has been introduced via
Egs. (23). Maximum permittivity in the kth lamina, &, has been
defined such that &%, = A*ef.

The total first variation in &/ may be expressed as

N
SU=U)Lox+ Y U8V (29)
k=1

where (U), and ()« are the first partial derivatives of U with
respectto both the displacementfield vector and the applied voltage
field, respectively. Carrying out the variation with respect to V¥,

N
> @ sv
k=1

N
1
= § k— Ex)Tek AFdA — Cr VK |sVF
kl[q //A A1A2( ) & p

(30)

where the capacitance C ﬁ of the kth layer is defined as

k
C;é// LAt dA (31)
A

Recalling Eq. (25) and carrying out the variation with respectto x,

T
(u)jzsx:// [AIA 5(8x)i| [A]HdA (32)
A 1432

Integrating Eq. (32) by parts,

(L{)ISx://(SxT{AIIAZ DT|:1]‘Vli|}dA+Il+IZ (33)
A
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where

I, =/ Ay [(N1)du + (Ne)dv + (Q4)dw

2

+ (M1)(6B1) + (M) (82)]ar da (34)

I =/ A [(Ng)du + (Np)dv + (Qs)w

1

+ (M) (3B1) + (M2)(82)]a; deyy (35)

and D, Q4, and Qs are defined in the Appendix. The symbols o7
and «; refer to boundary limits along «r; and a,, respectively.
The kinetic energy is defined as

1
Té—//phxfx,dA
2 A

so that on integration by parts its variation is given as

8T = //5x~(—,ohx,,)dA (36)
A

Substituting Egs. (29), (30), (33), and (36) into Eq. (26) then yields

[l e zizo i)

N
1
+ Z(SVk|:qk - //A T E0epA dA - C;Vk”
k=1

Hence, when the system is perturbed by an arbitrary admissible
variation, the preceding equality holds only if

hx, + DT N 0 (38)
PAX LA, M|~
and
1
HOES Ex)egAF dA + CEVE 39
q- (1) //AAlAz(x)eO +C, (39)
Substitution of Eq. (25) into Eq. (38) then yields
1 N
Kx = D’ KARVE 40
x,+ Kx AL k;eo (40)
where the (mass-normalized) stiffness operator X is defined as
1 1 A B
K& — D" & 41
,OhAlAz A1A2|:B Di| ( )

Damping may be introduced in the model through a damping op-
erator that is proportional to both the (mass-density-normalized)
stiffness operator X and the identity operator Z by positive factors
by and ¢ (Ref. 19):

C=boz—+COK (42)

Consequently, Eq. (40) becomes

1 N
C Kx= DT kARVE 43
x4+ Cx; + Kx ChAA, (;eo (43)

Equations (39) and (43) are the equations of motion for a com-
posite piezoelectric thin shell. Mechanical boundary conditions,
given in Table 1, are derived via the boundary integrals (/;, I).
The mechanical boundary conditions are stated in Poisson’s form
for conveniencebut are readily reducibleto four conditions per edge
(Kirchhoff form).'? Equation (39) is the (definite) integral form of

Table 1 Boundary conditions
for a general thin shell
(Poisson form)

* *

ap = ay =,
Nioru N> orv
Ng or v Ng oru
Q) orw Q) orw
M, or By M, or B,
Ms or B, Mg or By

the electrostatic charge displacement equation for this class of ma-
terials and was derived through the implicit assumption that the
standard electrical continuity conditions'® are applicable at inter-
laminar and air-dielectric interfaces.

Equation (39) may be renderedinto more usefuland advantageous
forms by recalling that the measured currentis by definition the time
derivative of the developed charge, and the voltage measured across
the electrode surfaces is found by dividing the developed charge
by the film capacitance. In practice an output measurement that is
directly related to mechanically induced strain is desired. Thus, the
most useful sensor current or voltage relationships are found by
manipulating Eq. (39) such that

ik(t)zik(t)—de—sz ! Ex)TekA dA  (44)
s " P4t L AA T

k _ vkisy _ vk _L 1 Tk Ak
Vi) =Vi(t) -V (t)—C]; //A AlAZ(Sx) e, A"dA  (45)

where i ,’; (t) and Vn’j (t) are the kth lamina current and voltage direct
measurements. The consequence of Eqs. (44) and (45) is that the
same piezoelectriclayer may be used simultaneously both as a sen-
sor and as an actuator through the use of differential circuitry and
electronics2° This capability is exploited in the SMT development
to follow.

H. Stiffness Operator Domain

The domain of definition for the operator IC (and, thus, C)is now
explicitly defined. Let the Hilbert space of all real-valued piecewise
continuousfunctions g(«y, o), k(x;, as) € A whose inner product
and norm are, respectively,defined as

=

(g, h) =/gThdA, lgl =(g.8
A

be denoted as H (A). Designating the order of I as [, let any ad-
missible set of boundary conditions given in Table 1 be describedin
terms of linear spatial differential operators B; of maximum order
I — 1 such that

Bx=0 on T, i=1,...,1 (46)

Let S be the set of all functions g for which B;g = 0 on I" and such
thatg and all of its [ derivativesare in H (A). In the ensuingdevelop-
ment, the admissible set of boundary conditions to be considered is
such that /C is renderedregularon S and has an inverse defined by a
Green’s function. Note thatany set of boundary conditions that does
not permit rigid-body motions automatically satisfies this criterion.
A procedure for explicitly determining the Green’s function inverse
is given in Ref. 13.

III. SMT Theory
A. General Design Methodology

In this section an SMT theory is presented that allows for the
selective excitation and detection of each and every mode of an
anisotropic piezolaminated thin shell. Inman?' restated the result of
Caughey and O’Kelly? as follows.

Theorem 1. Let x,, + Cx; + Kx = f(a, ay,t) describe the
equations of motion of a general system excited by a distributed
force f. Then, if C and K commute and are self-adjointon S, and
if each operator has an inverse defined by a Green’s function, the
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solution to the governing equation may be written as the uniformly
convergentseries

(o, @, 0) = Y (e, ), (1) @7

Jj=1

where {¢; (al,az)}?“zl is the set of orthonormal eigenfunctions
of K thatare identical to the eigenfunctions of C.

The operators C and K are proven in Ref. 23 to be self-adjoint
on S, and moreover, it is trivial to ascertain from Eq. (42) that both
operators commute, i.e., CX = KCC. It has also been presupposed
that the boundary conditions are such that I (and, thus, C) has a
Green’s function inverse. The following lemma may therefore be
stated based on Theorem 1.

Lemma 1. Define ¢ as

= ia.fﬁi’j’

j=1

aj € 9! (48)

Then, if an anisotropic thin shell of area A is excited by a distributed
force of the form f = V,(t) K ¢, the equations of motion of the
system are reduced to the form

for all integersm > 0.

Remark. The parameters «; are henceforth referred to as modal
participation factors (MPFs).

Proof. The set of eigenfunctions{¢;}52, is complete and spans
H(A), ¢ € S; moreover, all conditions in Theorem 1 are satisfied.
Replacingthe RHS of Eq. (43) with V, () I ¢ and applyingEq. (47),

Zw).fq.f +(bo+cK)p;q;+ K;q;1=V,(1) Z“.f Ke,
j=1 j=1

(50)

The modal orthonormality condition for anisotropic thin piezolam-
inated shellsis given as®

(&, ¢,) =4 (51)

where §;; is the Kronecker delta function. Because K¢p; = A;¢;,
where 1 ; is the eigenvalue correspondingto the jth eigenfunction,
a related condition is immediately established from Eq. (51):

(@i, Kop;) = 485 (52)

Taking the inner productof the mth eigenfunctiong,, with each side
of Eq. (50) and applying Egs. (51) and (52) then returns Eq. (49) for
all integers m > 0. O

Consider the following set of design constraints.

Condition I. Exactly n transducerlayersare located strictly above
the reference surface, and exactly n transducers are located strictly
below the reference surface (N =2n).

Condition 2. There are at least six piezoelectrically active layers
(2n>06).

Condition 3. For each layer above the reference surface there ex-
ists a layer below the reference surface such that {zf = —zF )7 _ .

Condition4. Layers located at heights z¥ and z* +" both are asso-
ciated with the identical piezoproperty vector eX.

Condition 5. The piezoproperty vectors {e*} _, associated with
at least three layers above and likewise below the reference surface
are different. When the same piezostockmaterialis used throughout,
€2, (0% = 0) # €,(6* = 0) deg and the skew angles of at least six
laminas above (and likewise below) the surface must be differentin
the range —90 < 6% < 90 deg.

The following lemma is now introduced.

Lemma 2. Let R € \%° be the matrix defined as

N
R% Zeg (eg)T (53)
k=1

Then, if conditions 1-5 hold, R is invertible. Furthermore, R can be
written as

n k()"
R=2)" ) ° (54)
k=1 0 (Zk)zei(ei)
Proof. Substituting Eq. (23) into Eq. (53) yields
N k (k)T kok ()]
RN T -
e () @) ]

Satisfying conditions 1, 3, and 4 then transforms R into the form

n

Zei(e’;)T 0
R=2]| k=1 (56)

n

0 Z (zkei) (zkei)T

k=1

which is equivalent to Eq. (54). Conditions 2 and 5 are seen to

be necessary for the invertibility of the submatrices located on the

diagonal of the rightmost term, based on the following lemma.?
Lemma 3. Given a set of column vectors {ry: r, € 0™}, the matrix

n

A
R, = E iy

k=1

is invertibleif and only if there exist at least m linearly independent
vectors in the set {r}; _,. The consequence of Lemma 3 is that the
submatrices on the diagonal of the rightmost expressionin Eq. (56)
are invertibleonlyif n > 3 and at least three elements of each vector
subset {e*}?_, and {z*e*}?_, are unique. Condition 1 ensures that
all z¥ are nonzero, and the physical geometry ensures that all z* are
different. Condition 2 and the first part of condition 5 then cause
the elements of each vector subset to be independent. The latter
part of condition 5 pertains to the event in which the same sample
of piezoelectric material is chosen to construct every active layer
in the structure. In such a case it is necessary that 621(9" =0) #
€%, (0% = 0) deg and that the skew angles of laminas above (and
likewise below) the surface must be differentin the range?> —90 <
6% < 90 deg. Obeying this constraint causes the piezoelectric field
properties of each of the n piezolaminas above (and likewise below)
the reference surface to be uniquely different with respect to the
principal geometric directions. O

The general SMT theorem is now stated.

Theorem 2. Consider an anisotropic (Kirchhoff-Love) thin shell
containing N piezolaminas whose equations of motion are given by
Eq. (43). Assume that each lamina is to function as a self-sensing
actuator such that the sensed measurement of the kth layer is given
by Eq. (44). Letthe measuredstatei, (t) be formed from the weighted
sum of the sensed currents of each individual lamina such that

N
() =Y ghi*()
k=1

Let the time-bound control input V*(¢) of each piezolamina be pro-
portionalto an identical time-dependentcontrol function V, () such
that V¥ (¢) = gg V,(t). Assume that conditions 1-5 are satisfied. If
the PFFs of each active layer are given by

1 |:A Bi| _
E¢ (57)

1 T
A= (K R
o (<o) A A, | B D
where the weighted modal sum ¢ is defined in Eq. (48), the invertible
constant matrix R is defined in Eq. (54), and the scaling factor g is
defined as

gg = max
(a1,a2) €A

1 A B -
(%YRlAIQ[B 0}54 (58)
1432
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Then the measured state is reduced to the form

(1) = ph Yo (0) (59)

Jj=1
and the equations of motion of the shell are reduced to the form
G;+ (by +coM)g; +1iq; = ojx;V, (1) (60)

for all integers j > 0, where «;, A;, and ¢; are, respectively, the
modal participation factor, eigenvalue, and generalized modal ve-
locity associated with the jth eigenfunction.

Proof. Substituting V*(1) = gV, (¢) and Eq. (57) into the RHS
of Eq. (43) and applying Lemma 2 yields [recall Eq. (41)]

Xi+Cx,+ Kx=V,) K¢ (61)

Equation (61) is in the form supposed by Lemma 1, and thus the
equations of motion are reduced to Eq. (49), which is synonymous
with Eq. (60).

Recalling that dA = A A, do; da,, the stipulation that

N
() =Y ghitn)

k=1

transforms Eq. (44) into the form

N
i (1) = / / (é’x,)T(Zg’ge’gA")dal day (62)
A k=1

Substituting Eq. (57) into Eq. (62) and applying Lemma 2 yields

(1) = ;é‘TABé‘_dd (63)
i;(t) = AAlAz(xf) B D(¢) o das

Substituting Egs. (47) and (48) into Eq. (63),

00 0 . 1 A B
()= ZZO‘J’%//AH@Q)T[B Di|(5¢j)d011 da,
i=1 =1
(64)

Integrating the RHS of Eq. (64) by parts and applying the boundary
conditions found in Table 1 yields*

(0 =ph Y aqle. Kl (65)

i=1j=1

which is reduced to Eq. (59) via Eq. (52). a
Equations (59) and (60) imply that one may selectively sense and
excite any given mode or subset of modes in the structure, which
leads naturally to the following corollary.
Corollary 1. When all suppositions of Theorem 2 are satisfied,
the system is completely controllable and observable.

B. Discussion

Having established Theorem 2, an anisotropic piezolaminated
SMT theory has been defined. By obeying those conditions stip-
ulated in the theorem, a self-sensing actuator may be developed
whose measurement and excitation are selectively weighted in the
system modal space. The theory is readily extended to dedicated
modal sensors or modal actuators through simplifications that are
assumed to be obvious. The general theory may be straightfor-
wardly reduced to directly address orthotropic and isotropic shell
structures 2 Isotropic systems can be shown to require only a single
piezolayer as a sufficient condition for complete controllability and
observablity. Orthotropic systems can be similarly shown to require
only three layers.

An SMT design methodology is thus presented: a modal subset
is selected, subset mode shapes are identified, and MPFs are cho-
sen; the stipulated design conditions are then obeyed and Eq. (57)
is applied. Although practical limitations, e.g., piezoelectric sub-
layer inhomogeneity, may impede perfect implementation of the
design methodology, experimental results on a multilayered or-
thotropic piezoplate show that often the methodology can be ap-
plied without significant degradation2* Nonetheless, a companion
nonselectivemodal transducertheory has been developed''>* based
on Theorem 2, which allows the modal character of a given piezo-
transducer to be determined directly. Greater fidelity in the design
process could be accomplished through an iterative design process
that incorporates both theories.

IV. Numerical Example: Cylindrical Panel

The SMT design conceptis both illustrated and validated through
a numerical example involving a cantilevered cylindrical panel
whose geometry is given in Fig. 4. The panel itself is a cylindrical
semisection, which spans 60 deg of a cylinder with a fixed radius
R, such that the («,-dimension) width is 0.4 m. The section length
is 0.6 m. Three mechanically isotropic and piezoelectrically biax-
ial PVDF layers are bonded to each surface of a double-layered
graphite-epoxy (G-epoxy) composite substrate, and the layers are
sequentially numbered from top (layer 1) to bottom (layer 8). Rel-
evant material properties are given in Tables 2 and 3.

A discrete model of the passive system was developed based
on a 169-node finite element representation of the plate using the

Table 2 Material properties for example structure

Property PVDF G-epoxy
Ey, Pa 2.00 x 10° 14.5 x 10°
Es, Pa 2.00 x 10° 9.60 x 10°
G2, Pa 1.42 x 10° 4.10 x 10°
Vi2 03 03

p, kg/m® 1780 1551
(€))6 =0 deg» C/m? 60 x 10° —
(€35)9 =0 deg» C/m? 20 x 10° —

Table3 Sublaminae skew angles and thicknesses

PVDF G-epoxy PVDF
(top) (middle) (bottom)
Layer 1 2 3 4 5 6 7 8

Skew angle, deg 60 0 —60 45 —45 —-60 0 60
Thickness, um 28 28 28 140 140 28 28 28

disturbance,
d()

Graphite-epoxy

Fig. 4 Cylindrical panel example problem geometry.
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Table4 Damping coefficients
and natural frequencies

Mode Cm Wy, rad/s
1 0.007438 29.93
2 0.01473 58.91
3 0.03583 143.3
4 0.03594 145.8
5 0.03898 155.9
6 0.04395 175.8
7 0.06420 256.8
8 0.06437 261.5
9 0.06836 273.4
10 0.08987 359.5

ANSYS finite element modeling (FEM) package.Mass and stiffness
matrices M and K were obtained. Viscous and structural damping
losses were added to the model by introducing a damping matrix
C such that C = byl + ¢y K, where [b,, ¢c,] = [0.0001, 0.0005].
The first three mode shapes are shown in Fig. 5. The first 10 natural
frequenciesand damping ratios are listed in Table 4. The goal of this
exampleis to developan SMT that will exclusivelyexcite and detect
only the first two structuralmodes: The MPFs are thus selected such
that o , = 1/A;, 1/A,, whereas all other MPFs are zero (A; = w%,
where w? is the jth natural frequency). '

Having determined the targeted subsystem mode shapes and se-
lected MPFs, the piezoelectric field functions are then determined
via Eq. (5§7). Based on the MPF values and data given in Tables 2
and 3, field function descriptionsfor each of the six active layers are
found via numerically approximating each mode shape as a sixth-
order polynomialin both ¢; and o, and then applying Eq. (57). The
six required PFFs for layers 1-3 and 6-8 are shown in Fig. 6. The
corresponding set of scaling factors gf for layers 1-3 and 6-8 were
found to be 3.17, 1.34, 1.45,2.74, 1.44, and 1.64, respectively.

Having completed the design process, the SMT design would
normally be implemented on the actual structure. For the purpose
of verifying the SMT theory, actual structural implementation is
replaced here with a numerical simulation. Premultiplying Eq. (43)
by phA; A, and recalling that V¥ (1) = g’gVa (t) such that

,OhAlAzxn + ,OhAlAz Cx, + ,OhAlAz Kx

N
= _[DT (Zg’gegAk>:| v, (66)
k=1

the FEM model was derived by ignoring the RHS and discretiz-
ing the left-hand side of Eq. (66) so as to arrive at a numerical
model in the form

Mi+Cx+Kx=0 (67)

where x is a time-dependent vector of «;, a, 3 displacements at
each node location. Using the piezofield functions just determined,
the state equations are augmented through the discretization of the
RHS of Eq. (66):

Mi+ Cx + Kx =fV, (68)

Then, limiting the amount of modes of interest to 20 for the purpose
of simulation, a modal transformation of the form x = Vg was
performed on Eq. (68), where V is a matrix whose columns are
the first 20-eigenvectors of Eq. (68) and ¢ is a 20-element column
vector containing the first 20 modal coordinates. The modal system
representationis then given as

G+Cq+Kq=f,V,(1) (69)

where C and K are diagonal matrices whose respective elements
containthe terms by 4-coX,, and A,,. Rewriting Eq. (69) in first-order

Mode 1

normalized radial deflection

o]

length (m) [a1-axis] width (m) [a2-axis]

Mode 2

-
(]
'

normalized radial deflection

I;an gth (m)
[at1-axis]

width (m) [a2-axis]

Mode 3

normalized radial deflection

0

length (m) [al-axis] -0.2 width (m) [a2-axis]

Fig. 5 First three structural mode shapes in curvilinear coordinate
frame (deflections are scaled); starred boundary indicates a clamped
condition.
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normalized radial deflection
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.. 06 _oo : . . 06 _go : A
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;
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E E
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0

length (m) [a1-axis] 06 02 width (m) [a2-axis] tength (m) [al-axis] 08 o2 width (m) [a2-axis]

Fig. 6 Piezofield functions for the six SMT sublaminas.
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form and including Eq. (44) in discretized form, the augmented
system equations are

L% L)

i=[o f{][‘.’} (71)
q
where i (1) 2 (1/ph)i,(t).
The SMT theory is itself validated by virtue of the observation
that the elements of f, are very nearly equal to o, A,,,, with marginal
errors attributable to numerical differentiation. In particular,

0.0258 0.0238]"
(72)

(a5 }acwa = [1.136 0.893  0.000571

Hence, error in the first mode was 13.6% and for the second mode
10.7%, whereas all MPFs correspondingto modes 3-20 were char-
acterized by nonzero, albeit small, values. The Bode magnitude
and phase plots of the transfer function i(s)/V,(s) are given in
Fig. 7 and furtherillustrate the effectivenessof the design approach.
Modesm > 3 are essentiallynot visible on the Bode plot becauseall
MPFs for those modes have been set to zero. The peak amplitude of
modes 1 and 2 should have been 0 dB had the numerical approxima-
tions been perfect, but instead deviate slightly. The most significant

Magnitude (dB)

Freq. (Hz)

100

Phase (deg)

-100
10° 10' 10
Freq. (Hz)

Fig. 7 Frequency response of i(s)/V,(s).

source of error was in fitting the mode shape estimates to polynomic
functions(for differentiation), which essentiallyis a nonquantifiable
error source but reasonably associated with observed error margins.

V. Conclusions

SMTs are developed for piezolaminated anisotropic shells in
which the contribution of each mode to the sensing or excitation of
the composite anisotropicplate system may be selectively weighted.
The discussion has been limited to zero-Gaussianthin shell geome-
tries well described by Love’s first approximationtheory. SMTs are
formed by combining the piezoelectric effect of several piezolami-
nas. The SMT theory provides the basis for a design methodologyin
which the number and spatial field properties of piezoelectric sub-
laminas can be selected to yield transducers with a specified modal
response. In a future paper, the theory is incorporated into a SMC
strategy, wherein both control laws and piezofield functions are de-
termined optimally for a broad class of performance metrics. The
SMT theory can also be used in a converse sense to determine the
modal character of a given piezolaminated shell structure. These
SMT-based strategies provide a powerful tool for designing state-
of-the-art active composite substructures as composite fabrication
techniques further advance.

Appendix: Definitions
The differential operator D is defined as

0A, AA,
0o R,

SERVINCRI
80(1 80(1 (Al)

ad 1 04, ad 1 0
P2l — | ——— - — . — . A A2
“ |:80(2 (Az 80(2) 80(1 Al 80(1 2i| ( )
3 1 94, 3 1 9
Dbl — | —m— ) - — — . — . A A3
» |:80(1 <A1 80(1) 8052 Az 8052 2i| ( )

and

poa [ D (24

o 80(1 Al 80(1 ! 8052
a1 3 IA,

e = A [ = A4
8052 Az |:80(1 : <80{1 >i| } ( )



The operator £ is defined as
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The transverse shear force resultants are defined as'?
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The orthotropic stiffness suboperators are defined as
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